亚州综合一区_啪啪av大全导航福利_韩国一级片免费看_国产对白做受_夜夜躁很很躁日日躁2020_第一色网站

English | 中文版 | 手機版 企業登錄 | 個人登錄 | 郵件訂閱
當前位置 > 首頁 > 技術文章 > 表界面科學最新文獻QSense的解讀

表界面科學最新文獻QSense的解讀

瀏覽次數:1923 發布日期:2019-12-4  來源:本站 僅供參考,謝絕轉載,否則責任自負
百歐林簡報-表界面科學最新文獻- QSense -2019年第16期
 
  1. Name:Layer by Layer Antimicrobial Coatings Based on Nafion, Lysozyme, and Chitosan
AuthorsElla N. Gibbons, Charis Winder, Elliot Barron, Diogo Fernandes, Marta J. Krysmann, Antonios Kelarakis, Adam V. S. Parry and Stephen G. Yeates
JournalNanomaterials
  • 10.3390/nano9111563
  • The study focuses on the development of a new family of layer-by-layer coatings comprising Nafion, lysozyme and chitosan to address challenges related to microbial contamination. Circular dichroism was employed to gain insights on the interactions of the building blocks at the molecular level. Quartz crystal microbalance tests were used to monitor in real time the build-up of multilayer coatings, while atomic force microscopy, contact angle and surface zeta potential measurements were performed to assess the surface characteristics of the multilayer assemblies. Remarkably, the nanocoated surfaces show almost 100% reduction in the population of both Escherichia coli and Staphylococcus aureus. The study suggests that Nafion based synergistic platforms can offer an effective line of defence against bacteria, facilitating antimicrobial mechanisms that go beyond the concept of exclusion zone.
Linkhttps://www_mdpi.xilesou.top/2079-4991/9/11/1563
 
  1. Name:Clickable poly-l-lysine for the formation of biorecognition surfaces
AuthorsDaniele Di Iorio, Almudena Marti, Sander Koeman and Jurriaan Huskens
JournalRSC Advances
  • 10.1039/c9ra08714a
  • Biomolecules are immobilized onto surfaces employing the fast and stable adsorption of poly-L-lysine (PLL) polymers and the versatile copper-free click chemistry reactions. This method provides the combined advantages of versatile surface adsorption with density control using polyelectrolytes and of the covalent and orthogonal immobilization of biomolecules with higher reaction rates and improved yields of click chemistry. Using DNA attachment as a proof of concept, control over the DNA probe density and applicability in electrochemical detection are presented.
Linkhttps://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra08714a#!divAbstract
 
  1. Name:An ultrafast quartz crystal microbalance based on a frequency comb approach delivers sub-millisecond time resolution
AuthorsFrederick Meyer, Arne Langhoff, Antonio Arnau, Diethelm Johannsmann and Ilya Reviakine
JournalReview of Scientific Instruments
  • 10.1063/1.5115979
  • Quartz crystal microbalance with dissipation monitoring (QCMD) is a simple and versatile sensing technique with applications in a wide variety of academic and industrial fields, most notably electrochemistry, biophysics, quality control, and environmental monitoring. QCMD is limited by a relatively poor time resolution, which is of the order of seconds with conventional instrument designs at the noise level usually required. In this work, we present a design of an ultrafast QCMD with submillisecond time resolution. It is based on a frequency comb approach applied to a high-fundamental-frequency (HFF) resonator through a multifrequency lock-in amplifier. The combination allows us to reach data acquisition rates >10 kHz. We illustrate the method using a toy model of a glass sphere dropped on the resonator surfaces, bare or coated with liposomes, in liquid. We discuss some interesting features of the results obtained with the dropped spheres, such as bending of the HFF resonators due to the impact, sphere bouncing (or the absence of it), and contact aging.
Linkhttps://aip_scitation.xilesou.top/doi/abs/10.1063/1.5115979
 
  1. Name:Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents
AuthorsPaul A. Dalgarno, José Juan-Colás, Gordon J. Hedley, Lucas Piñeiro, Mercedes Novo, Cibran Perez-Gonzalez, Ifor D. W. Samuel, Mark C. Leake, Steven Johnson, Wajih Al-Soufi, J. Carlos Penedo and Steven D. Quinn
JournalScientific Reports
  • 10.1038/s41598-019-49210-0
  • The solubilization of membranes by detergents is critical for many technological applications and has become widely used in biochemistry research to induce cell rupture, extract cell constituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic details of solubilization have been extensively investigated, but the kinetic aspects remain poorly understood. Here we used a combination of single-vesicle Förster resonance energy transfer (svFRET), fluorescence correlation spectroscopy and quartz-crystal microbalance with dissipation monitoring to access the real-time kinetics and elementary solubilization steps of sub-micron sized vesicles, which are inaccessible by conventional diffraction-limited optical methods. Real-time injection of a non-ionic detergent, Triton X, induced biphasic solubilization kinetics of surface-immobilized vesicles labelled with the Dil/DiD FRET pair. The nanoscale sensitivity accessible by svFRET allowed us to unambiguously assign each kinetic step to distortions of the vesicle structure comprising an initial fast vesicle-swelling event followed by slow lipid loss and micellization. We expect the svFRET platform to be applicable beyond the sub-micron sizes studied here and become a unique tool to unravel the complex kinetics of detergent-lipid interactions.
Linkhttps://www.nature.com/articles/s41598-019-49210-0
 
  1. Name:A fundamental study of adsorption kinetics of surfactants onto metal oxides using quartz crystal microbalance with dissipation (QCM-D)
Authors Sandra C.Medina, Andreia S.F.Farinha, Abdul-Hamid Emwas, Assiyeh Tabatabai and TorOve Leiknes
JournalColloids and Surfaces A: Physicochemical and Engineering Aspects
  • 10.1016/j.colsurfa.2019.124237
  • Membrane fouling challenges the viability of oil-field produced water (PW) treatment with ceramic membranes. Surfactants play an important role in irreversible fouling through adsorption phenomena. However, previous studies have shown contradictory results. Hence, a fundamental understanding of surfactants-metal oxides interactions is necessary.
Linkhttps://www.sciencedirect.com/science/article/pii/S0927775719312324
 
  1. Name:Understanding the cation dependent surfactant adsorption on clay minerals in oil recovery
Authors Zilong LiuZilong Liu, Murali K. Ghatkesar, Ernst J. R. Sudholter, Binder Singh and Naveen Kumar
JournalEnergy & Fuels
  • 10.1021/acs.energyfuels.9b03109
  • Surfactants have the ability to mobilize residual oil trapped in pore spaces of matrix rocks by lowering the oil-water interfacial tension, resulting in a higher oil recovery. However, the loss of surfactant by adsorption onto the rock surface has become a major concern that reduces the efficiency of the surfactant flooding process. In this study, the adsorption behavior of an anionic surfactant to a clay mineral surface was investigated by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) upon variation with different cation conditions. Through recording the change of frequency and dissipation of clay modified sensors, it allows us for a real-time quantitative analysis of the surfactant adsorption with nanogram sensitivity. The results revealed that the surfactant adsorption increased in a Ca2+ containing solution with increasing pH from 6 to 11, while from a Na+ containing solution more adsorption occurred at acidic conditions. The adsorbed amount went through a maximum (~200 mM) as a function of the Ca2+ concentration and the Voigt model suggested that multilayer adsorption of surfactants could be as many as 4-6 monolayers. Using mixed cation (Ca2+ and Na+) solutions, the amount of adsorbed surfactant decreased linearly with decreasing fraction of CaCl2, but Na+ competed for about ~30% adsorption sites. The importance of the presence of CaCl2 for the surfactant adsorption was stressed in high salinity and low salinity solutions in the presence and absence of Ca2+. Furthermore, increasing the temperature from 23 to 65 °C shows first a small increase of surfactant adsorption followed by a reduction about 20%. The obtained results contribute to a better understanding of surfactant adsorption on clay surfaces and guide to optimal flooding conditions with a reduced surfactant loss.
Linkhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.9b03109
發布者:瑞典百歐林科技有限公司
聯系電話:021-68370071/021-68370072
E-mail:vanilla.chen@biolinscientific.com

用戶名: 密碼: 匿名 快速注冊 忘記密碼
評論只代表網友觀點,不代表本站觀點。 請輸入驗證碼: 8795
Copyright(C) 1998-2025 生物器材網 電話:021-64166852;13621656896 E-mail:info@bio-equip.com
主站蜘蛛池模板: 阿娇囗交全套高清视频ai换脸 | 在线观看黄色免费网站 | 欧美A级成人婬片免费看 | 91mv.cool在线观看 | 日本aⅴ精品一区二区三区 www99久久 | 台湾黄三级高清在线观看播放 | 亚州精品一二三区 | 亚洲精品欧美综合一区二区 | 少妇影院yy111111 | 国产精品久久久久久亚洲美女高潮 | 久久女人 | 国产区AV在线观看 | 亚洲欧洲国产码专区在线观看 | 国产精品老牛影院av | 国产成人精品亚洲日本在线观看 | 天堂新版在线 | 欧美全免费aaaaaa特黄在线 | 久久久久无码国产精品不卡 | 一区二区三区不卡视频在线观看 | 欧美大奶少妇 | 国产第一福利影院 | 精品少妇爆乳无码专区久久 | 亚洲精品成人av久久 | 91天堂网 | 日本超黄视频 | 俄罗斯毛毛xxxx喷水 | 国产人与动牲交 | 国产嗷嗷叫高潮快点再用力 | www.我要操 | 不卡成人 | 日韩精品综合网 | 99国精产品一区二区三区a片 | 精品国产乱码久久久久久绯色 | 登山的目的2韩语版免费观看 | 成人午夜免费无码福利片 | 综合色婷婷 | 爱情不设限在线观看 | 九九久久自然熟的香蕉图片 | 国产精品人人妻人人爽久久 | 欧美一进一出抽搐大尺度视频在哪里 | 精品国产第一区二区三区观看体验 |