上周,中國農大郭巖課題組在Nature Communications在線發表題為Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance的研究成果。
研究揭示了14-3-3蛋白通過感受鈣信號,選擇性的結合和抑制SOS2和PKS5的激酶活性,并協同調控Na+/H+反向轉運蛋白SOS1和質膜H+-ATPase活性,影響植物耐鹽能力。
擬南芥根尖分生區Na+流結果
我們為您整理了利用非損傷微測技術(Non-invasive Micro-test Technology, NMT)研究SOS基因家族的鹽脅迫文章。
Co-expression of SpSOS1 and SpAHA1 in transgenic Arabidopsis plants improves salinity tolerance. BMC Plant Biology, 2019, 19(1):74.
Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants. Plant Biotechnology Journal, 2015, 13(7): 962-73.
Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.). Protoplasma, 2014, 251(1):219-31.
SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. Journal of plant physiology, 2012, 169(3): 255-261.
Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. Journal of Experimental Botany, 2016, 67(3):835-44.
Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots. Journal of Experimental Botany, 2013, 64(2): 471-481.
Na+-H+ antiporter activity of the SOS1 gene, lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings. Physiologia Plantarum, 2009,137(2):155-65.